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ABSTRACT

The utility of a recently developed analytical micromechanics model for the response of

metal matrix composites under thermal loading is illustrated by comparison with the results gen-

erated using the finite-element approach. The model is based on the concentric cylinder assem-

blage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or

ortholropic, temperature-dependent properties. The elastoplastic boundary-value problem of an

arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formula-

tion (originally developed for elastic layered media) and Mendelson's iterative technique of suc-

cessive elastic solutions. These features of the model facilitate efficient investigation of the

effects of various microstructural details, such as functionally graded architectures of interracial

layers, on the evolution of residual stresses during cool down. The available closed-form expres-

sions for the field variables can readily be incorporated into an optimization algorithm in order

to efficiently identify optimal configurations of graded interfaces for given applications. Com-

parison of residual stress distributions after cool down generated using finite-element analysis

and the present micromechanics model for four composite systems with substantially different

temperature-dependent elastic, plastic and thermal properties illustrates the efficacy of the

developed analytical scheme.

INTRODUCTION

The concentric cylinder geometry has been employed quite frequently during the past thirty

years for modeling the response of unidirectional composites. The early models axe based on a

single fiber embedded in a cylindrical shell (Hashin, 1962; Hill, 1965; Mulhern and Rogers,

1967; Dvorak and Rao, 1976a,b). These models have been used to predict elastic moduli or their

bounds for general, three-dimensional loading, as well as thermoelastic and inelastic response

under axisymmetric loading. More recently, generalizations of these models have been proposed

in order to include the interaction of the composite cylinder with the surrounding medium

(Dvorak and Bahei-EI-Din, 1979; Christensen and Lo, 1979), or to take into account the effect of



microstructural details on the overall composite response (Hashin, 1990; Benveniste et al., 1991;

Sutcu, 1992; Warwick and Clyne, 1991). The microstructural details include the presence of car-

bon coating around certain types of fibers, the layered morphology of such ceramic fibers as the

SCS6 SiC fiber used in titanium matrix composites, as well as the presence of an interface or

interphase layer between the fiber and the matrix. The interfacial region can arise naturally due

to chemical reaction between the fiber and the matrix (Wawner and Gundel, 1991), or can be

introduced deliberately in order to minimize residual fabrication stresses (Arnold et al., 1990).

With the exception of the model proposed by Sutcu which deals with elastic response of uni-

directional metal matrix composites with layered SiC fibers, the aforementioned models focus

on specific geometries involving only a few concentric

Recently, an analytical elastoplastic solution to

model under axisymmetric thermal loading that allows

cylinders.

the micromechanics concentric cylinder

consideration of arbitrarily layered con-

figurations has been constructed by Pindera et al. (1992). The solution is based on the

local/global stiffness matrix formulation originally developed by Buffer (1971) for stress

analysis of isotropic, elastic layered media, and Mendelson's method of successive elastic solu-

tions for elastoplastic problems with Prandd-Reuss constituents (Mendelson, 1983). Applica-

tions of the local/global stiffness matrix technique to the elastic stress analysis problems of com-

posite materials and structures have been presented by Pindera (1991). Derstine and Pindera

(1988) used the method to develop an approximate solution to the problem of an arbitrarily lam-

inated composite tube under axisymmetric loading with inelastic graphite/epoxy plies that were

modeled using the endochronic theory.

In the local/global stiffness matrix formulation, the solution of a given boundary-value

problem is reformulated in terms of the interracial displacements as the basic unknowns in place

of the eigenvectors associated with the eigenfunctions that satisfy the governing differential

equations for the given problem. This reformulation entails construction of a local stiffness

matrix that relates the tractions at the outer boundaries of a layer to the corresponding interfacial

displacements. By assembling the local stiffness matrices along the main diagonal of the global

stiffness matrix in an overlapping fashion, the interracial continuity conditions and the external

boundary conditions are identically satisfied. In elastoplastic problems, the local stiffness matrix

equation that describes the response of a layer, and thus the global stiffness matrix for the entire

assemblage, involves integrals of plastic strain distributions in the individual layers. These

integrals appear as vectors on the right hand side of the system of equations that ensures satisfac-

tion of boundary conditions and continuity of interfacial tractions and displacements. Since these

integrals depend implicitly on the unknown interracial displacements, the system of equations

must be solved in an iterative fashion. The solution developed by Pindera et al. (1992) utilizes



theclassicalincrementalplasticitymodelfor theinelasticresponseof thematrix phasein anuni-

directionalmetalmatrix composite,andemploysMendelson'smethodof successiveelasticsolu-

tionsto solvethe systemof nonlinearequations.

The reformulationof the boundary-valueproblemin termsof the interracial displacements

asthebasicunknownsusingthelocal/globalstiffnessmatrixapproachoffersa numberof advan-

tagesover the standardformulation.First of all, theconstructionof the global stiffnessmatrix

canbe automated very easily, facilitating addition of extra layers without any difficulty. This

construction also eliminates certain redundant equations that arise from the application of inter-

facial continuity and boundary condition equations in the standard formulation, resulting in

nearly 50% reduction in the size of the system of simultaneous equations for a large number of

layers. Furthermore, as the elements of the stiffness matrices for different types of elastic (isotro-

pic, transversely isotropic, orthotropic) and inelastic (isotropic) layers have been provided in

closed form, a given boundary-value problem does not have to be resolved each time a particular

concentric cylinder assemblage is considered. Different configurations are efficiently handled by

assembling the global stiffness matrix in an appropriate fashion using the provided local stiffness

matrices.

The elastoplastic solution of the multiple concentric cylinder (MCC) under axisymmelric

thermal loading based on the local/global stiffness matrix formulation is very well suited for

computer implementation, facilitating efficient parametric studies for developing new composite

materials with elastoplastic constituents. Since the solution methodology is analytical rather than

numerical (eg. finite-element or finite-difference schemes), there is no need to generate meshes

or grids every time the geomewical details of the concentric cylinder are changed. Different con-

figurations are conveniently handled by changing a few lines in the input file of a computer pro-

gram that can be executed on a personal computer/work station. It is this feature that makes

computer implementation of the solution very attractive for use by the materials scientist,

designer and analyst alike. The construction of the input data file is simple and can be further

facilitated by a user-friendly interface that allows the user to specify the input parameters in an

interactive fashion through menu-driven data entry.

The ability to easily vary the number and arrangement of the concentric cylinders makes

this method ideal for a wide variety of applications involving axisymmetric loading of advanced

unidirectional composites. These applications include the reduction of residual stresses in metal

matrix composites using single or multiple compliant/compensating interfacial layers as sug-

gested by Arnold and co-workers (1990, 1992) (see also Jansson and Leckie (1992)), and design

of engineered interfaces for improved performance (Arnold and Wilt, 1992). Further, since the

solution is analytic, with expressions for the various field quantities provided in closed form, it



canreadily be incorporated into an optimization algorithm in order to efficiently identify optimal

interracial layer configurations or morphologies for given applications. The method also facili-

tates efficient discretization of functionally graded composites into an arbitrarily large number of

layers in order to model spatial property variations as accurately as is desired. Thus either

discretely-graded or continuously-graded inteffacial regions can be investigated.

Thus far, the MCC model has been employed to investigate the effect of: 1.) morphology of

SCS6 SiC fibers; 2.) architecture of interracial layers; and 3.) microstructure of the ¢x2 + 13

titanium aluminide matrix, on the evolution of residual stresses in SiCFI'i3A1 unidirectional com-

posites (Pindera et al., 1992; Pindera and Freed, 1992). A recent investigation addresses the

effectiveness of graded inteffacial layers in reducing residual stresses in titanium matrix compo-

sites subjected to both monotonic and cyclic thermal loading (Williams et al., 1993). An investi-

gation addressing the problem of optimization of residual stresses in metal matrix composites

using multiple layers at the fiber/matrix interface is currently in progress.

A limited comparison between the predictions of the MCC model and the finite-element

results generated using a commercially available code was presented by Pindera et al. (1992) for

the problem of a composite cylinder with a single interracial layer subjected to a temperature

drop. The purpose of this paper is to present an extensive comparison between the predictions of

the MCC model and the finite-element results obtained with the commercially-available code

ABAQUS (1989) for several concentric cylinder configurations with single and multiple interra-

cial layers, and different constituents, subjected to thermal loading. The ultimate objective is to

demonstrate the utility of the developed analytical solution methodology for efficiently and

accurately investigating the thermoplastic response of MMC's under axisymmetric thermal load-

ing in the presence of various microstructural details.

ANALYTICAL MODEL

The analytical model is based on a long, cylindrical assemblage of an arbitrary number of

concentric cylinders or shells perfectly bonded to each other, Figure 1. Each of the cylindrical

shells is either elastic or inelastic. The elastic shells may be isotropic, transversely isotropic, or

orthotropic (radially or circumferentially), while the inelastic shells are taken as initially isotro-

pic and are modelled using the time-independent incremental plasticity with isotropic hardening.

All the material parameters governing the response of the elastic and inelastic layers are func-

tions of temperature. The geometrical model is thus general enough to allow one to model the

actual morphologies of fiber, interfacial layer and matrix phases in sufficient detail.

A distribution of displacements and stresses in the individual phases of the concentric com-

posite cylinder model is sought under the conditions of a spatially uniform temperature change
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thatvarieswith time. A solutionto theoutlinedelastoplasticboundary-valueproblemis obtained

usingthe displacementformulation.In solvingtheboundary-valueproblem,the following nota-

tion is adopted.The inner solidcoreis denotedby a subscriptor superscript1and theoutermost

cylindrical shellby n. Theinnerradiusof thekth shell is denotedby rk_l andtheouterradius by

rk. The traction and displacement components at the inner and outer radii of the kth shell are

assigned superscripts "-" and "+", respectively.

For the prescribed axisymmetric loading, the longitudinal, tangential and radial displace-

ment components u, v and w, referred to the cylindrical coordinate system x-r--O centered at the

origin of the concentric cylinder assemblage have the form,

u = u(x) =e0 x

W = w(r)

v=0

(1)

where eo is the same uniform longitudinal strain for all layers. These displacement components

yield the following strain components in the cylindrical coordinate system,

du w(r) dw(r)
exx = -- = e-o, Co0 - , err - (2)

dx r dr

with the shear strain components identically zero. Since the strain components are either con-

stant or functions of only the radial coordinate r, the stress components are at most functions of

r, and therefore the stress equilibrium equations in cylindrical coordinates reduce to the single

equation,

don t_rr - c_0o
+ - 0 (3)

dr r

The governing differential equation for the radial displacement w(r) in each shell is

obtained by expressing the stress components C_rrand a00 in Equation (3) in terms of w(r) and its

gradient using stress-strain equations and strain-displacement relations given by Equation (2).

For problems in cylindrical coordinates, the stress-strain equations for an orthotropic material in

the presence of thermal loading and inelastic effects, and in the absence of shear strains, are

given by,
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oe_"= Cxe

j c= Car I r_r- Eirrn- O_r(T- To) J

• in
in e_n0, err are inelastic strains, and tZxx(T- To),In the above, e.xx, Coo, err are total strains, exx,

O.oo(T- To), oqr(T- To) are thermal strains, with To denoting a reference temperature and T

denoting the current temperature. The corresponding constitutive equations for an isotropic or

transversely isotropic material can be obtained by equating the appropriate stiffness matrix ele-

ments.

Given the functional form of the displacement field, the strain-displacement equations and

the constitutive equations in a cylindrical shell, the governing differential equation for the radial

displacement w(r) in each shell is obtained from the surviving equilibrium equation in the form,

Transversely isotropic,elasticlayers(Cxa = C_, Coo = C_, aoo = art )

d2w 1 dw w

+ r dr r2 =0 (5a)

Orthotropic, elastic layers

d2w 1 dw 1 Coo 1[ (Cox - Cxr) (Ca - Col)
----w= Zr dr r2 Car r C_ i=x,e,r C-'rr

mi(T - To)] (Sb)

Isotropic, inelastic layers

d2w 1 dw 1 1 (Cri -- C0i) in d !.-, Cri in

dr 2 + E Eii (r) + _ _ -_---Eii (r) (5C)-W _ --r dr r i=x,e,r Car _t i=x,e,r

in
where the distribution of the inelastic strains, eli (r), is assumed to be known at the beginning of

each thermal load increment.



The solution of the above equations is obtained subject to the external boundary condition,

(_rr(rn) = O, the interfacial displacement and traction continuity conditions,

Wk_l(rk_l)=Wk(rk_l), 6_-l(rk_l)=6_(rk_l), and the longitudinal equilibrium condition,

OxxdAc = O, where A_ is the cross-sectional area of the concentric cylinder assemblage.
,%

Using standard techniques, solutions to the governing differential equations are obtained in

the form,

Transversely isotropic, elastic layers

A2
w(r) = A 1r +

r
(6a)

Orthotropic, elastic layers

w(r) = A11A + A2 r-k +
(COx- c_)

•reo +
<C_ - COO)

(cn - c_)
Z

i=x,O,r (Cax -- Coo)
oqir(T-T0) (6b)

Isotropic, inelastic layers

1

w(r)= f E
rk_li=x.O,r

r

(Cri+C0i) in ' ' ' 2k! _0
eli (r)r dr +

C_r r _li= ,r

(cn-c_) m , dr"
eii (r)-7 + (6c)c_ r

2

A2 1 _ C._n )r(r_lAir + _ + e_(rk-1
r _" i=x,0,r ',--rr

_- 1)

COO 1/2 <r <rk.
where _ = (--_---) and rk-1 -

The above solutions contain unknown coefficients A k and A2k for each layer, as well as the

unknown, uniform axial strain Co. For the solid core, the constant A_ vanishes since the radial

displacement at the center has to vanish. These unknown coefficients are determined from the

boundary condition, interracial traction and displacement continuity conditions, and the longitu-

dinal force equilibrium condition. Application of these conditions yields a system of equations in

the unknown A k and A k coefficients and the uniform longitudinal strain Co, that is solved



iteratively when theinelastic strains are present. An iterative procedure is required because the

inelastic strains depend implicitly on the coefficients A_ and A_.

In order to automate the construction of this system of equations so that any arbitrarily lay-

ered configuration can easily be considered, we reformulate the problem in terms of the interra-

cial radial displacements as the basic unknowns in place of the coefficients A1k and A[ by using

the concept of a local stiffness matrix. The local stiffness matrix relates the interracial tractions

at the inner and outer radii of the kth layer to the corresponding interfacial radial displacements,

and is obtained from the solutions to Equations (5a-c) (i.e. Equations (6a-c)) in conjunction with

the constitutive equations and strain-displacement equations. To construct the local stiffness

matrix for the kth layer, we first express the coefficients A1k and A2k in terms of the interfacial

displacements wk(rk_l) and wk(rk) by evaluating the solution for the radial displacement com-

ponent w(r) at the appropriate locations. These expressions are then used in the equation for the

radial stress component in the kth layer given in terms of the determined radial displacement

field. The final step entails an evaluation of the radial stress in the kth layer at the inner and

outer radii in order to generate the radial tractions at those locations.

The form of the local stiffness matrix equation for the kth layer in the state of generalized

plane strain and in the presence of thermal and inelastic effects is

kl=lkfw- fkl3 ffllk fgl_ k

+le j r-r0 +lg j (7)

The elements kkl ..... kk3 of the local stiffness matrix are functions of the geometry and elastic

material properties of the kth layer (which may vary with temperature). The thermal effects are

represented by fk and f_, which are functions of the thermal expansion coefficients for the kth

layer. The plastic effects are represented by g_ and g[, which are given in terms of the integrals

of the plastic strain distribution in the given layer. The elements of the local stiffness matrix and

the elements of the force vectors appearing in Equation (7) have been provided by Pindera et al.

(1992) for transversely isotropic and orthotropic, elastic layers, and isotropic, inelastic layers.

Imposition of continuity of displacements and tractions along the common interfaces,

together with the boundary condition on the radial stress at rn, and the longitudinal equlibrium

condition, gives rise to a system of equations in the unknown interracial displacements expressed

in the matrix form below. The first n equations result from the imposition of interfacial con-

tinuity and boundary conditions, whereas the nth+l equation ensures that the longitudinal equili-

brium is satisfied at any cross-section along the cylinder's axis.



k1 +k l kh
+k ll

0 k_l

0

k_2 k_3

Wl

W2

.--- _°

Wn

eo

fl + f21

I

f_

Enk I

(T-T0)

gl +g21

g_

Enk

(8)

The elements of the last row, t_ 1, _2k2, Igk, _'_k, and Hk have also been provided by Pindera et al.

(1992). We observe that the global stiffness matrix is constructed by first superposing the local

stiffness matrices along the main diagonal in an overlapping fashion, and then adding a column

and a row to account for the thermal effects and the longitudinal equilibrium condition in the

case of free thermal expansion/contraction. Under the conditions of plane strain, eo vanishes and

the nth+l row and column are not added into the global stiffness matrix. It is a simple matter to

construct a computer algorithm for assembling the global stiffness matrix.

SOLUTION PROCEDURE

The system of equations given by Equation (8) is solved iteratively at each temperature step

for the specified loading after the manner suggested by Mendelson (1983). The iteration is per-

formed on the plastic force vector that consists of the elements glk, gk and _.,1-lk. The elements

glk and g_ are expressed in terms of the integrals of the plastic strain distributions in the given

layer that have the form (see Pindera et al. (1992)),

rk p

_k (Cn+Coi) m , , , (Cn-Coi) in , dr
_ eii (r)r dr , _ E eii (r)-7--

rk_l i=_x,O,r err rk_l i=x,O,r Crr r

(9a)

whereas the element Hk has the form,

rk

in ' ' '
I _ Cxieii(r)rdr

rk_ 1i=x, 0, r

(9b)

Since the elements of the global stiffness matrix at a given temperature are constant, only one

inversion of the matrix for each sequence of iterations is required. As the elements flk, f_ and

_f_k of the thermal force vector are also constant at a given temperature, most of the

9



computationaleffort lies in evaluating the integrals in Equation (9) at each iteration. The algo-

rithm for the iterative procedure is given in the sequel.

For the given temperature increment, the plastic strain distribution in each layer is

expressed in terms of the distribution at the preceding temperature plus an increment that results

from the imposed temperature change.

i = e (OI + (10)

The plastic strain increment is derived from the von Mises yield condition which, in the presence

of temperature-dependent elastoplastic properties of the matrix phase, has the form

1_.2
1 , • ._-o(gP,T)=OF = _--oijoi j --2

(11)

where _ is the effective yield stress, which is a function of both the effective plastic strain k-p and

temperature. The plastic strain increment is thus,

_F
-'-7-

c_,_ - aO_j & = o_j& (12)

where the proportionality constant clk is obtained from the consistency condition for plastic load-

ing in the form

2 - _

o;jDijld(ClEld -- clE_) + (o;jC;j -- _O-_--)dT

d_ = (13)
4__2 _

where dX, > 0 for plastic loading, d_ < 0 for neutral loading or unloading, and de_ are the ther-

mal strain increments given by,

= [o jff) +
_T

(T - To)]dT (14)
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ODijkl
Dijkl arc theelasticstiffnesselements,and Ci' j - OT -e_d. In the present investigation, the elas-

toplastic stress-strain response of the matrix is taken to be bilinear so that the slope of the effec-

five stress-plastic strain curve, , is constant at a given temperature. Since the incremental

theory of plasticity is used to calculate the plastic strain increment at each point along the radial

coordinate, the inelastic analysis is valid for both loading and unloading in the plastic phases.

The plastic strain distribution in each layer is determined by calculating the plastic strains

at twenty-one stations after updating the plastic strains at these locations using Equation (10).

The current values for the plastic strains at these stations are then used in determining the

integrals given in Equation (9), and thus the dements of the plastic force vector in Equation (8).

Updated values of the inteffacial displacements arc then obtained from Equation (8). With a

knowledge of the interfacial displacements and the axial strain Co, the coefficients A1k and A k in

each layer can be obtained, producing solutions for the radial displacement wk(r) from which

radial and tangential total and plastic strains, and the corresponding stresses, can be obtained.

These arc then used to obtain new approximations for the plastic strain increments. The iterative

process is terminated when the differences between two successive sets of plastic strain incre-

ments axe less than some prescribed value. The above procedure is described in detail by Men-

delson (1983).

NUMERICAL RESULTS AND DISCUSSION

In order to demonstrate the accuracy, efficiency and efficacy of the outlined solution tech-

nique, we investigate the evolution of residual stresses in unidirectional metal matrix composites

with and without interfacial layers for four material systems with different temperature depen-

dence of the constituents' behavior. The predictions of the MCC model subsequently are com-

pared with the results generated using the commercially available finite-dement code ABAQUS.

The considered material systems are state-of-the-art metal matrix composites under con-

sideration for advanced aerospace applications. The four material systems chosen for the correla-

tion study are: SiCfI'i3A1, A1EO3/NiA1, A1203/NiCrA1Y1, and A12Oa/NiCrA1Y2. The properties

of the indvidual constituents for these composites are listed in Table 1 (SCS6 fiber and Ti-24A1-

11Nb matrix) and Table 2 (A1203 fiber and NiA1, NiCrA1Y1, and NiCrA1Y2 matrices). For the

SiCfriaA1 system, residual stresses were calculated for cool down from 1500°F to 75°F. In the

case of the remaining material systems, residual stresses were calculated for cool down from

2300°F to 70°F.
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For theSiCfI'i3 A1 system, three configurations were considered, namely; a fiber embedded

in a homogeneous matrix, a fiber embedded in a matrix with a one-layer interface, and a fiber

embedded in a matrix with a three-layer interface. In all cases, the outer radius of the composite

cylinder was normalized to 1.0, with the normalized fiber radius of 0.6320 producing a fiber

volume fraction of 0.40. For the configurations involving one- and three-layer interfaces, the

outer radius of the interfacial region was 0.6952, resulting in an interfacial volume fraction of

0.08. The mechanical properties of the interface layers (with the exception of the Poisson's ratio)

were taken to be one half of the matrix properties at each temperature. The thermal expansion

coefficient of the single interracial layer configuration was two times that of the matrix, while in

the case of the three-layer interface configuration the thermal expansion coefficient was two,

two and one half, and three times that of the matrix phase starting from the innermost layer. For

the A12Os fiber systems, only one configuration was considered, namely; a fiber embedded in a

matrix without an interface having the same geometry as the corresponding SiC/TisA1 compo-

site.

The MCC calculations were performed using temperature increments of - 1.0°F. Conver-

gence of plastic strain increments at the various radial locations typically did not require more

than six iterations at each temperature increment. As an additional check, values of the effective

stress calculated from the effective stress-plastic strain curve at various radial locations were

compared with values of the effective stress based on the obtained stress components at these

locations. Typically, differences were a fraction of a percent.

For the finite-dement calculations, three quarter-symmetry meshes were constructed that

consisted of triangular (CGPE8) and quadrilateral (CGPE10), generalized plane strain elements,

Figure 2. The coarse mesh (Figure 2a) consisted of 88 elements, the medium mesh (Figure 2b)

consisted of 296 elements, and the fine mesh (Figure 2c) consisted of 580 dements. Each of the

three meshes has provision for inclusion of a single interracial layer with four elements across

the thickness of the inteffacial region. These meshes were used to study the convergence and

accuracy of the finite-element results and to compare the CPU times with the corresponding run

times for the MCC calculations. Selected comparison of the axial, circumferential and radial

stress components and the radial displacement at several radial locations in the fiber, interracial

layer and matrix obtained with the present analytical solution and the finite-element solution is

presented in Table 3 for the SiC/Ti3 A1 material system with one-layer interface. The results indi-

cate that even with the coarse mesh the differences between the MMC and finite-element results

are quite small. The fine mesh provides better approximation of the external zero-traction boun-

dary condition and in some cases better satisfaction of the interracial continuity conditions. For

this reason, it was used to generate the remainder of the results for the SiC/TiaA1 system with

12



one-layer interface, as well as for the configuration without an interface. The same mesh was

also used to generate results for the A1203 fiber systems. For the SiC/Ti3A1 system with a

three-layer interface, a new mesh was constructed with 708 elements that was based on the fine,

580-element mesh, Figure 3. This was done by subdividing the interracial region into three

layers while maintaining four elements through the thickness of each of the three layers. Table 4

presents a comparison of CPU times for the cool down of the SiC/Ti3AI composite with one-

layer and three-layer interfaces from 1500°F to 75°F simulated with the four finite-element

meshes and the MCC model. The calculation were performed on an IBM RS-6000 machine. The

efficiency of the MCC model is clearly evident.

It should be noted that the comparison of the CPU times presented above is perhaps

misleading because the analytical model is one-dimensional, whereas the finite-element calcula-

tions were performed using a two-dimensional model. It would certainly have been more

appropriate to generate the finite-element results using axisymmewic, generalized plane strain

(line) elements. Such elements, however, are presently not available in the existing ABAQUS

code. Nevertheless, the comparison presented above does give an indication of the model's effi-

ciency. Further, while the freely-refined meshes used in the present investigation are probably

not necessary for most applications, and may even be considered an "overkill", the authors

nevertheless are of the opinion that in order to meet the intended objectives of this investigation,

such refinement was desirable. This is because the outlined analytical solution is, in principle, an

exact solution that satisfies, in addition to the field equations, all the external boundary condi-

tions and internal continuity conditions provided that the integration of the plastic strain distribu-

tions is performed accurately. In the present case, the interfacial region was subdivided into

three layers of equal thickness and the matrix phase into six, and the plastic strain distributions

were calculated at twenty-one points within each layer as previously mentioned. The accuracy

with which the integrals of the plastic strain distributions given in Equation (9) were calculated

in generating the analytical solution, therefore, was quite high. Consequently, in order to obtain

a comparable level of resolution with the finite-element approach and thus to render the com-

parison between the two solutions meaningful, the finely-refined mesh configuration was

chosen.

SiC/Ti 3 A1 system

Figure 4a-c presents the axial, circumferential and radial stress distributions, respectively,

in the SiC/Ti 3 A1 unidirectional composite without an interface, at four temperatures between the

stress-free temperature of 1500°F and the f'mal cool-down temperature of 75°1=. The analytical

predictions are indicated by the solid lines whereas the finite-element results are given by
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different symbols supcrposed on the solid lines corresponding to the four different temperatures.

The stress distributions at 875°F are elastic, characterized by piecewise uniform values of the

axial stress throughout the entire region, and inversely quadratic dependence of the circumferen-

tial and radial stresses in the matrix phase. These baseline distributions can be compared with

the distributions at the remaining temperatures which exhibit significant influence of plasticity at

the fiber/matrix interface as discussed by Arnold et al. (1990). Comparing the distributions at the

different temperatures allows one to delineate the elastic-plastic boundaries in the matrix phase.

Clearly, the correlation between the analytical solution to the MCC model and the finite-element

results is excellent.

The three stress distributions for the SiC/Ti3AI composite with a one-layer and three-layer

interface at 75°F after cool down from 1500°F are compared in Figure 5a-c. Again, the correla-

tion between the analytical solution to the MCC model and the finite-element results for the two

configurations is unquestionably excellent. Comparing the stress distributions for the one-layer

and three-layer interface configurations one observes the effect of grading the thermal expansion

coefficient in the interracial region on the stress fields in the matrix phase as well as the interfa-

cial region itself. The use of compensating layers in reducing fabrication-induced residual

stresses in unidirectional metal matrix composites in the presence of matrix plasticity has been

discussed by Arnold et al. (1990, 1992), as well as Pindera et al. (1992), and is currently the sub-

ject of continuing investigation.

A1203 based systems

Figure 6a-c presents the distributions of the axial, circumferential and radial stresses at

70°F after cool down from 2300°F for the three A1203 fiber-based material systems. The two

NiCrA1Y mawices, designated by numbers 1 and 2, differ only in the temperature dependence of

the Young's moduli and yield stresses. The Young's modulus of the NiCrA1Y1 matrix is

between 38% and 55% higher than that of NiCrA1Y2 in almost the entire temperature range

(with the exception of 2400°F), while the range in which the yield stress of NiCrA1Y1 exceeds

that of NiCrA1Y2 varies between 25% and 155%. Comparing the thermoelastoplastic properties

of the NiA1 matrix on the one hand, and the two NiCrA1Y matrices on the other, one observes:

initially similar magnitudes in the thermal expansion coefficient but a steeper rise with increas-

ing temperature for the NiCrA1Y matrices; similar magnitudes of the Young's modulus in the

lower temperature range for the NiA1 and NiCrA1Y matrices, but a greater decline with increas-

ing temperature for the NiCrAIY matrix; significantly lower yield stress in the NiA1 matrix up to

1800°F; and the hardening slope of the NiAI matrix that is five times greater than that of the two

NiCrA1Y matrices.
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The results in Figure 6a-c indicate that the NiCrA1Y1 matrix composite produces the

highest axial, circumferential and radial residual stresses, followed by the NiCrA1Y2 matrix

composite and then finally the NiA1 matrix composite. The differences in the three residual

stress distributions between the two NiCrA1Y matrix composites and the NiA1 matrix composite

are significant. The stress distributions in the three material systems exhibit significant plasticity

effects, with the NiA1 matrix system showing the most uniform profiles in the matrix region.

This is not surprising in view of the low values of yield stress in comparison to the yield stress of

the two NiCrA1Y matrices. Comparing the analytical solution of the MCC model and the finite-

element results, one again observes excellent correlation.

CONCLUSIONS

The extensive comparison between the results of the analytical micromechanics model

based on the multiple concentric cylinder geometry and the finite-element analysis for several

different material systems exhibiting different temperature dependence of the constituents' pro-

perties and different configurations, clearly demonstrates the accuracy and the power of the

developed analytical approach for modeling thermoplastic response of unidirectional metal

matrix composites under axisymmetric loading. The pronounced plasticity effects observed in

the response of advanced metal matrix composites currently under development for elevated

temperature applications necessarily require incorporation of inelastic constitutive models for

the matrix and/or fiber phases into the micromechanical stress analysis. Numerical procedures

such as the finite-element or finite-difference analyses are approximate, geometry-specific and

often require large computation times. The current method is an extension of the local/global

stiffness matrix formulation originally developed for stress analysis of layered, elastic media, to

axisymmetric elastoplastic problems and utilizes Mendelson's method of successive elastic solu-

tions. The major advantage offered by the outlined method is the ease with which different

geometric configurations involving arbitrarily layered concentric cylinders are handled. Since

the method is analytic, this is easily accomplished by changing a few lines in the input data file

of a computer code. This, in turn, facilitates efficient parametric studies in the course of develop-

ing new composite materials, as well as in investigating the effects of various microstructural

details on the local and global response. The demonstrated predictive capability and efficiency

of the analytic MCC model sets the stage for further investigations involving unidirectional

metal matrix composites with functionally-graded constituents.
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Table 1. Material properties of SCS6 SiC fiber and titanium matrix (Arnold et al. (1990)).

Material properties 750F 392°F 797°F 11120F 1202°F 15000F

_iC fiber

a (10 -6 / °F) 1.96 2.01 2.15 2.33 2.38 2.50
E (Msi) 58.00 58.00 58.00 58.00 58.00 58.00
v 0.25 0.25 0.25 0.25 0.25 0.25

ri-24Al-11Nb matrix

a (10 -6 / °F) 5.00 5.20 5.70 5.85 5.90 6.15
E (Msi) 16.00 14.50 11.00 12.50 9.89 6.20
v 0.26 0.26 0.26 0.26 0.26 0.26

_ly (ksi) 53.89 59.00 53.70 42.20 39.10 24.00
(Msi) 3.33 0.44 0.32 0.19 0.097 0.00

Note: In the table above and the tables that follow, a is the instantaneous thermal expansion

coefficient; E is the Young' s modulus, v is the Poisson" s ratio; o v is the yield stress; and H
is the hardening slope based on a bilinear representation of the elastic-plastic stress-strain

response.
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Table 2. Material properties of A1203 fiber and NiA1 (Bowman, 1992), NiCrA1Y 1, and NiCrA1Y2
(Barkalow et al., 1985) matrices.

Properties 70°F 800°F 1200°F 1400°F 1600°F 1800°F 2000°F 2400°F

/k1203 fiber

o_(10 .-6 / °F) 3.35 4.86 5.42 5.63 5.79 5.91 5.98 5.97
E (Msi) 61.10 59.83 59.60 59.33 59.07 58.80 53.13 50.30
v 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

slim matrix

tx (10 --6 / oF) 7.12 8.24 8.76 9.01 9.23 9.45 9.69 9.95
E (Msi) 28.00 25.59 24.27 23.61 22.95 22.29 19.29 10.14
v 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

__ly(ksi) 45.70 22.50 16.06 13.07 10.62 7.79 5.30 3.39
(Msi) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

_IiCrA1YI* matrix

a (10 --6 / °F) 5.44 7.76 9.03 9.67 10.30 10.94 11.57 12.84
E (Msi) 27.00 25.30 21.40 17.70 12.80 7.60 3.10 0.10
v 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

_ly (ksi) 150.00 146.00 135.80 101.20 74.90 21.90 5.00 1.00
(Msi) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

qiCrA1Y2 *° matrix

a (10 .-6 / oF) 5.44 7.76 9.03 9.67 10.30 10.94 11.57 12.84
E (Msi) 19.50 16.80 14.70 11.60 8.90 5.20 2.10 0.10
v 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

_ly (ksi) 117.80 104.10 99.40 71.00 29.40 11.00 3.80 0.70
(Msi) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

* NiCrAIY1 matrix chemical composition." Ni-lO.2Cr-9.3Al-6.0Ta-O22Hf-O.43Y
** NiCrAIY2 matrix chemical composition: Ni-17.SCr-12.S A l-O.61Y-O.73 Hf -20.8Co
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Table 3. Comparison of stresses and radial displacements generated by the present model
and ABAQUS.

Radial location or= oee Orr w(r)
(psi) (psi) (psi) (xl0 -" in/in)

2.6320 (fiber)

ABAQUS (88 el.) -83,855 -19,579 -19,580 -0.19012
ABAQUS (296 el.) -83,856 -19,580 -19,580 -0.19012
ABAQUS (580 el.) -83,854 -19,579 -19,577 -0.19012

Present model -83,840 -19,590 -19,590 43.19010

).6320 (ri,,_, inteffacial layer)

ABAQUS (88 el.) 38,960 41,897 -19,557 43.19012
ABAQUS (296 el.) 38,967 41,902 -19,547 43.19012
ABAQUS (580 el.) 38,973 41,908 -19,539 -0.19012

Present model 38,900 41,870 -19,590 43.19010

).6952 (r_,._ interfacial layer)

ABAQUS (88 el.) 41,792 39,235 -14,085 43.41143
ABAQUS (296 el.) 41,743 39,190 -14,141 43.41145
ABAQUS (580 el.) 41,813 39,255 -14,056 -0.41141

Present model 41,720 39,200 -14,130 -0.41150

).6952 (matrix)

ABAQUS (88 el.) 50,627 36,758 -13,831 43.41143
ABAQUS (296 el.) 50,507 36,447 -14,053 43.41145
ABAQUS (580 el.) 50,445 36,541 -14,087 43.41141

Present model 50,320 36,640 -14,130 -0.41150

1.0 (matrix)

ABAQUS (88 el.) 62,783
ABAQUS (296 el.) 62,778
ABAQUS (580 el.) 62,714

Present model 62,700

28,045 97 -0.72439
28,038 94 43.72439
28,004 14 43.72439
27,990 0 43.72450
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Table 4. Comparison of CPU times between the present model and ABAQUS for cooling down
of a SiC/Ti3A1 unidirectional composite from 1500°F to 75°F.

CPU time (seconds)

• interracial layer

Present model (189 integration stations)
ABAQUS (88-element mesh)
ABAQUS (296-element mesh)
ABAQUS (580-element mesh)

12.76
87.24

237.57
511.00

interfacial layers

Present model (189 integration stations)
ABAQUS (708-element mesh)

12.76
714.41

Interracial
layers

X

Fiber with a layered

-- morphology

I
I
I
I
I

0 Xkr

(

...I _---- iJ" -- -- --I.. _

s _S_ I ____ I _

_ Homogeneous
matrix

Figure 1 - Multiple concentric cylinder model.
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A.) 88 Elem_t Mesh

B.) 296 Elemcat Mesh

Figure 2 - Finite-element mesh configurations for a concentric cylinder with one interfacial
layer: a.) 88 element mesh; b.) 296 dement mesh; c.) 580 element mesh.
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C.) 580 Element Mesh

Figure 2 - Concluded.

Figure 3 - Finite-element mesh configuration with 708 elements for a concentric cylinder with
three interfacial layers.
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I -- matrix _ I_----- fiber --[_

100.0 I I ] I

_xx (ksi)

75.0

50.0

25.0

0.0

-25.0

-50.0

-75.0

[]

V v V V V

SIC/TI.24AI-11Nb

875 F,..,75 F : MCCM
V 875 F : ABAQUS
[] 475 F : ABAQUS
• 275 F : ABAQUS

O 75 F : ABAQUS

I I-100.0 I I
0.5 0.6 0.7 0.8 0.9 1.0

Radial distance

A.)

Figure 4 - Comparison between finite-element and present solution stress distributions in a
SiC4q'i-24Al-llNb composite without an interface at T = 875°F, 475°F, 275°F and 75°F after
cool down from 1500°F: a.) axial stress; b.) hoop stress; c.) radial stress.
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matrix

75.0 I I I I

tee (ksi)

50.0

25.0

0.0

-25.0

-50.0

A v

SiC/Ti-24AI-11Nb

875 F,..,75 F : MCCM
V 875 F : ABAQUS
O 475 F : ABAQUS
• 275 F : ABAQUS
0 75 F : ABAQUS

0.5

I I I I
0.6 0.7 0.8

Radial distance

0.9 1.0

B.)

Figure 4 - Continued.
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matrix

0.0 I I I I

O'rr (ksi)

-10.0

-25.0

SiCrri-24Al-11Nb

875 F,..,75 F : MCCM
875 F : ABAQUS
475 F : ABAQUS
275 F : ABAQUS
75 F : ABAQUS

I I
0.7 0.8

Radial distance

c.)

Figure 4 - Concluded.
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-91----- fiber "_ interface 19
matrix -I

100.0 I I I I

Cxx (ksi)

75.0

50.0

25.0

0.0

-25.0

-50.0

-75.0

SiC/'ri-24Al-11Nb

75 F : MCCM
• 1 interface : 75 F : ABAQUS

O 3 interfaces : 75 F : ABAQUS

v

-100.0 I I t I
0.5 0.6 0.7 0.8 0.9

Radial distance

.0

A.)

Figure 5 - Comparison between finite-element and present solution stress distributions in a
SiC/Ti-24Al-11Nb composite with an one-layer and three-layer interface at T = 75°F after cool
down from 1500°F: a.) axial stress; b.) hoop stress; c.) radial stress.
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I'--'b'r--_in_r_I" matrix .f
100.0 I I I 1

_ee (ksi)

75.0

50.0

25.0

0.0

-25.0

-50.0
0.5

O

SIC/TI-24AI-11Nb

75 F : MCCM
1 Interface : 75 F : ABAQUS
3 interfaces : 75 F : ABAQUS

I
0.6

I I
0.7 0.8

Radial distance

I
0.9 .0

B)

Figure 5 - Continued.
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-q----- fiber "_ interface I_, matrix ;I

(_rr (ksi)

0.0 I I I t

-5.0

-10.0

-15.0

-20.0

-25.0

-30.0

0.5

SiC/Ti-24AI-11Nb

75 F : MCCM
• 1 interface : 75 F : ABAQUS
O 3 interfaces :75 F : ABAQUS

0.6 0.7 0.8

Radial distance

0.9 1.0

C.)

Figure 5 - Concluded.
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_ fiber _[--_ matrix _[

200.0 + ; 4

Oxx (ksi)

150.0

100.0

50.0

0.0

-50.0

-100.0

-150.0

Residual Stresses

MCCM
V AI203/NiAI : ABAQUS
• AI203/NiCrAIY 1 : ABAQUS
0 AI203/NICrAIY 2 : ABAQUS

-200.0 p===
0.5 0.6 0.7 0.8 0.9 1.0

Radial distance

A.)

Figure 6 - Comparison between f'mite-element and present solution stress distributions in a
AI203/NiA1, A1203/NiCrA1Y1 and AI203/NiCrA1Y2 composite without an interface at T =
70°F after cool down from 2300°F: a.) axial stress; b.) hoop stress; c.) radial stress.

3O



matrix

Oee (ksi)

125.0 _ + 4- 4-

100.0

75.0

50.0

25.0

0.0

-25.0

-50.0

V

Residual Stresses

MCCM
V AI203/NIAI : ABAQUS
• AI203/NICrAIY 1 : ABAQUS

O AI203/NiCrAIY 1 : ABAQUS

-75.0 _ + ÷
0.5 0.6 0.7 0.8

Radial distance

÷
0.9 1.0

a.)

Figure 6 - Continued.
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-91------ fiber _19 matrix I_ ]

Orr (ksi)

0.0

-20.0

-40.0

-60.0

-80.0

_-100.0

Residual Stresses

MCCM
V AI203/NIAI : ABAQUS
• AI203/NiCrAIY 1 : ABAQUS
0 AI203/NICrAIY 2 : ABAQUS

I I I I
0.5 0.6 0.7 0.8

Radial distance

0.9 1.0

c.)

Figure 6 - Concluded.
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